Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics
نویسنده
چکیده
This paper deals with a broad question—to what extent is topology algebraic—using two specific questions: (1) what are the algebraic conditions on the underlying membership lattices which insure that categories for topology and fuzzy topology are indeed topological categories; and (2) what are the algebraic conditions which insure that algebraic theories in the sense of Manes are a foundation for the powerset theories generating topological categories for topology and fuzzy topology? This paper answers the first question by generalizing the Höhle-Šostak foundations for fixed-basis lattice-valued topology and the Rodabaugh foundations for variable-basis lattice-valued topology using semiquantales; and it answers the second question by giving necessary and sufficient conditions under which certain theories—the very ones generating powerset theories generating (fuzzy) topological theories in the sense of this paper—are algebraic theories, and these conditions use unital quantales. The algebraic conditions answering the second question are much stronger than those answering the first question. The syntactic benefits of having an algebraic theory as a foundation for the powerset theory underlying a (fuzzy) topological theory are explored; the relationship between these two specific questions is discussed; the role of pseudo-adjoints is identified in variable-basis powerset theories which are algebraically generated; the relationships between topological theories in the sense of Adámek-Herrlich-Strecker and topological theories in the sense of this paper are fully resolved; lower-image operators introduced for fixed-basis mathematics are completely described in terms of standard image operators; certain algebraic theories are given which determine powerset theories determining a new class of variable-basis categories for topology and fuzzy topology using new preimage operators; and the theories of this paper are undergirded throughout by several extensive inventories of examples.
منابع مشابه
POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES
The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, w...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET OPERATORS
In this paper, let $L$ be a completeresiduated lattice, and let {bf Set} denote the category of setsand mappings, $LF$-{bf Pos} denote the category of $LF$-posets and$LF$-monotone mappings, and $LF$-{bf CSLat}$(sqcup)$, $LF$-{bfCSLat}$(sqcap)$ denote the category of $LF$-completelattices and $LF$-join-preserving mappings and the category of$LF$-complete lattices and $LF$-meet-preserving mapping...
متن کاملPOWERSET OPERATORS OF EXTENSIONAL FUZZY SETS
Powerset structures of extensional fuzzy sets in sets with similarity relations are investigated. It is proved that extensional fuzzy sets have powerset structures which are powerset theories in the category of sets with similarity relations, and some of these powerset theories are defined also by algebraic theories (monads). Between Zadeh's fuzzy powerset theory and the classical powerset theo...
متن کاملWeak hyper semi-quantales and weak hypervalued topological spaces
The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007